
E2B Thesaurus

Translation using an *Engineering-to-Biology Thesaurus* addresses terminology and understanding issues.

- Maps synonymous biology and engineering terms
- Assists with translating biological information into an engineering context

Flow-based functional models follow a standard lexicon to qualitatively represent a system in terms of its function (i.e., what the system does) as opposed to its form (i.e., what comprises the system).

Functional Basis Modeling Lexicon

US	Primary	Branch	Channel	Connect	Control	Convert	Provision	Signal	Support
unctio	Secondary	Separate	Import	Couple	Actuate	Convert	Store	Sense	Stabilize
		Distribute	Export	Mix	Regulate		Supply	Indicate	Secure
			Transfer		Change			Process	Position
ц			Guide		Stop				

	Primary	Material	En	Signal	
Flows		Human	Human	Hydraulic	Status
	Cassadami	Gas	Acoustic	Magnetic	Control
		Liquid	Biological	Mechanical	
	Secondary	Solid	Chemical	Pneumatic	
		Plasma	Electrical	Radioactive/Nuclear	
		Mixture	Electromagnetic	Thermal	

The engineering-to-biology thesaurus is structured similarly to the functional basis.

ID

	Functiona	Addition		
Primary			2 nd Correspondents	2nd Bio-Correspondents
	Secondary	Tertiary	3 rd Correspondents	3rd Bio-Correspondents
		Tertiary	3 rd Correspondents	3rd Bio-Correspondents
	Secondary		2 nd Correspondents	2nd Bio-Correspondents
		Tertiary	3 rd Correspondents	3rd Bio-Correspondents
Primary	Secondary		2 nd Correspondents	2nd Bio-Correspondents
		Tertiary	3 rd Correspondents	3rd Bio-Correspondents
		Tertiary	3 rd Correspondents	3rd Bio-Correspondents
		Tertiary	3 rd Correspondents	3rd Bio-Correspondents
	Secondary		2 nd Correspondents	2 nd Bio-Correspondents

The engineering-to-biology thesaurus is structured similarly to the functional basis.

Functional Basis Terms			Biological Correspondente	
Primary	Primary Secondary Tertiary		Biological Correspondents	
	Liquid		Acid, water, blood, buffer, plasma	
	Calid	Object	Cilia, kidney, heart, bone, plasmid, xylem	
Material	Solid	Composite	Enzyme, virus, cytoplasm, prokaryote, symplast	
	N.C. I.	Solid-solid	Adenosine, membrane, ribosome, blastula	
	Mixture	Solid-liquid	Cell, protein, blood, algae, phytochrome	
Energy	Chemical		Glucose, glycogen, mitochondria, sugar, ligand	
	Mechanical		Depress, pressure, stretch, tension, contraction	
	Conorato		Bleaching, dialysis, meiosis, detach, abscission	
Branch	Separate	Divide	Anaphase, cleave, metaphase, division	
	Distribute		Circulation, diffusion, exchange, scatter, spread	
Connect	Couple		Bond, build, mate, phosphorylate, overlap	
Control	Degulate		Gate, electrophoresis, respire, sustain, preserve	
Magnitude	Regulate	Increase	Hyperpolarize, pinocytosis, grow, multiply	

But also structured in the opposite way to allow quick look up of biological terms.

Biological Term (Alphabetical order)	Synonymous Engineering Term (from Functional Basis)
Remain	Regulate
Repel	Export
Replicate	Increase
Repress	Inhibit
Repressor	Solid-Liquid Mixture Material
Respire, respiration	Regulate, Convert
Resting	Status Signal
Retina	Solid-Liquid Mixture Material
Ribosome	Solid-Object Material, Solid-Solid Mixture Material
RNA	Solid-Particulate Material, Solid-Composite Material
Roll	Rotate
Saturated	Status Signal
Scatter	Distribute
Seal	Stop

Example of how one might use the E2B

* The challenge has been releasing the tiny screws and accurately placing them into the right spot - They are so lightweight and small that van der Waals forces keep them from detaching from the robot's microgripper.

Plastir counterpart

plastic: holder []] plate for holding screws

robot

Screw

What is the problem here?

* The challenge has been releasing the tiny screws and accurately placing them into the right spot - They are so lightweight and small that van der Waals forces keep them from detaching from the robot's microgripper.

Plastir counterpart

plastic: holder plate for holding screws

9

Screw

J.K. Nagel © 2020

Separation of screw from robot microgripper

* The challenge has been releasing the tiny screws and accurately placing them into the right spot - They are so lightweight and small that van der Waals forces keep them from detaching from the robot's microgripper.

Plastir counterpart

robot blastic= holder plate for holding screws

IO

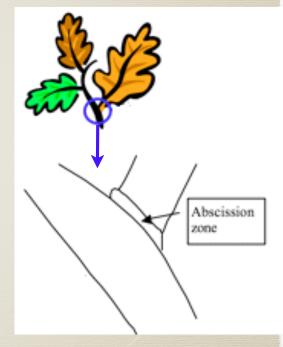
How do natural systems separate?

Screw

J.K. Nagel © 2020

Searching for Inspiration

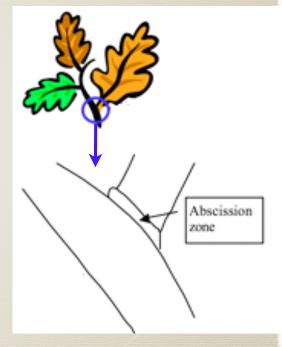
* Looking to the Engineering-to-Biology Thesaurus for terms that mean *separate* we find:

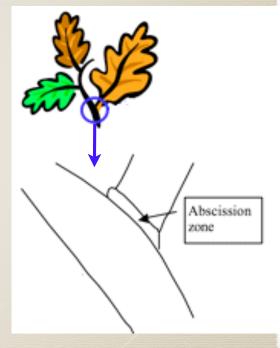

Table 1:	Engineering-to-Biology	v Thesaurus Function Terms	

Correspondent Terms	
s, abscission, mitosis, <i>horesis</i> , dialysis, dena- release	
si D	

Biological Term (Alphabetical order)	Synonymous Engineering Term (from Functional Basis)	
Abscission	Separate	

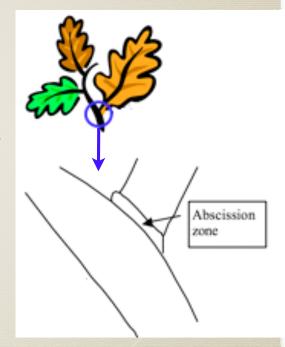
- * Need to read more about Abscission to understand how separation happens
- * Use the Engineering-to-Biology Thesaurus to translate the biological information


* 'Leaf fall (abscission) is regulated by an interplay of the hormones ethylene and auxin. The effect of auxin on the detachment of old leaves from stems is quite different from root initiation. This process, called abscission, is the cause of autumn leaf fall. Leaves consist of a blade and a petiole that attaches the blade to the stem. Abscission results from the breakdown of a specific part of the petiole, the abscission zone. ... The time of abscission of leaves in nature appears to be determined in part by a decrease in the movement of auxin, produced in the blade, through the petiole.'


I.K. Nagel Shug Robert B. Stone, Daniel A. McAdams, and James L. Greer. (2007) "Integrating Function-Based and Biomimetic Design for Automatic Concept Generation," International Conference on Engineering Design, vno. 518.

* Biological term > Engineering term

* Abscission > separation

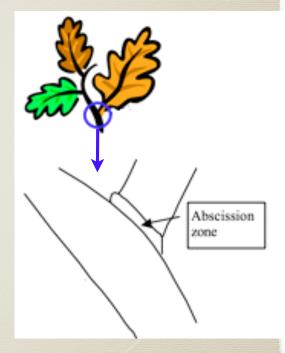

* 'Leaf fall (separation) is regulated by an interplay of the hormones ethylene and auxin. The effect of auxin on the detachment of old leaves from stems is quite different from root initiation. This process, called separation, is the cause of autumn leaf fall. Leaves consist of a blade and a petiole that attaches the blade to the stem. Separation results from the breakdown of a specific part of the petiole, the separation zone. ... The time of separation of leaves in nature appears to be determined in part by a decrease in the movement of auxin, produced in the blade, through the petiole.'

I.K. Nagel Shug Robert B. Stone, Daniel A. McAdams, and James L. Greer. (2007) "Integrating Function-Based and Biomimetic Design for Automatic Concept Generation," International Conference on Engineering Design, vno. 518.

Translation, Round 2

* 'Leaf fall (separation) is regulated by an interplay of the hormones ethylene and auxin. The effect of auxin on the detachment of old leaves from stems is quite different from root initiation. This process, called separation, is the cause of autumn leaf fall. Leaves consist of a blade and a petiole that attaches the blade to the stem. Separation results from the breakdown of a specific part of the petiole, the separation zone. ... The time of separation of leaves in nature appears to be determined in part by a decrease in the movement of auxin, produced in the blade, through the petiole.'

Purves, W.K., Sadava, D., Orians, G.H. and Heller, H.C., 2001, Life, The Science of Biology, 6 ed, Sunderland, MA, Sinauer Associates.


I.K. Nagel Shug Robert B. Stone, Daniel A. McAdams, and James L. Greer. (2007) "Integrating Function-Based and Biomimetic Design for Automatic Concept Generation," International Conference on Engineering Design, v.no. 518.

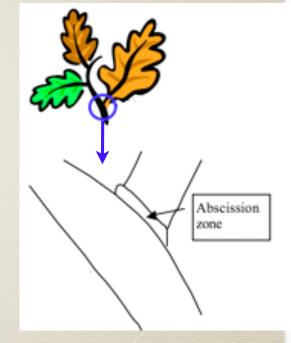
Translation, Round 2


* Biological term > Engineering term

* Auxin > liquid-liquid mixture material

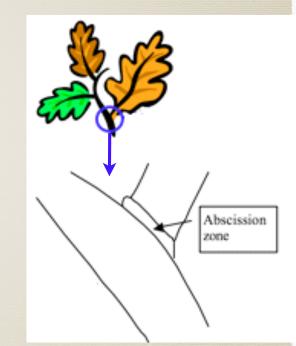
* Hormones > liquid-liquid mixture materials

* 'Leaf fall (separation) is regulated by an interplay of the liquid-liquid mixture materials. The effect of liquid-liquid mixture material on the separate of old leaves from stems is quite different from root initiation. This process, called separation, is the cause of autumn leaf fall. Leaves consist of a blade and a petiole that attaches the blade to the stem. Separation results from the breakdown of a specific part of the petiole, the separation zone. ... The time of separation of leaves in nature appears to be determined in part by a decrease in the movement of liquid-liquid mixture material, produced in the blade, through the petiole.'



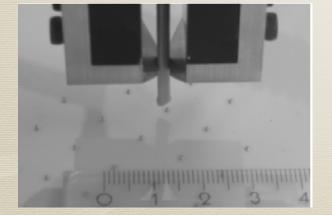
Purves, W.K., Sadava, D., Orians, G.H. and Heller, H.C., 2001, Life, The Science of Biology, 6 ed, Sunderland, MA, Sinauer Associates.

I.K. Nagel Change Robert B. Stone, Daniel A. McAdams, and James L. Greer. (2007) "Integrating Function-Based and Biomimetic Design for Automatic Concept Generation," International Conference on Engineering Design, vno. 518.


What can we learn?

* When a liquid material stops flowing between the plant and the leaves, a separation zone occurs and the leaf separates from the plant.

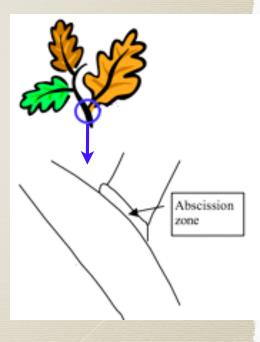
Functional requirement: Separation of screw from robot microgripper


- * Abscission \Leftrightarrow Separate
- * What is different between abscission and engineered systems?

The separation is sacrificial. The leaf does not re-attach, but a new one can grow.

Polypropylene rod with screw

Microgripper holding polypropylene rod

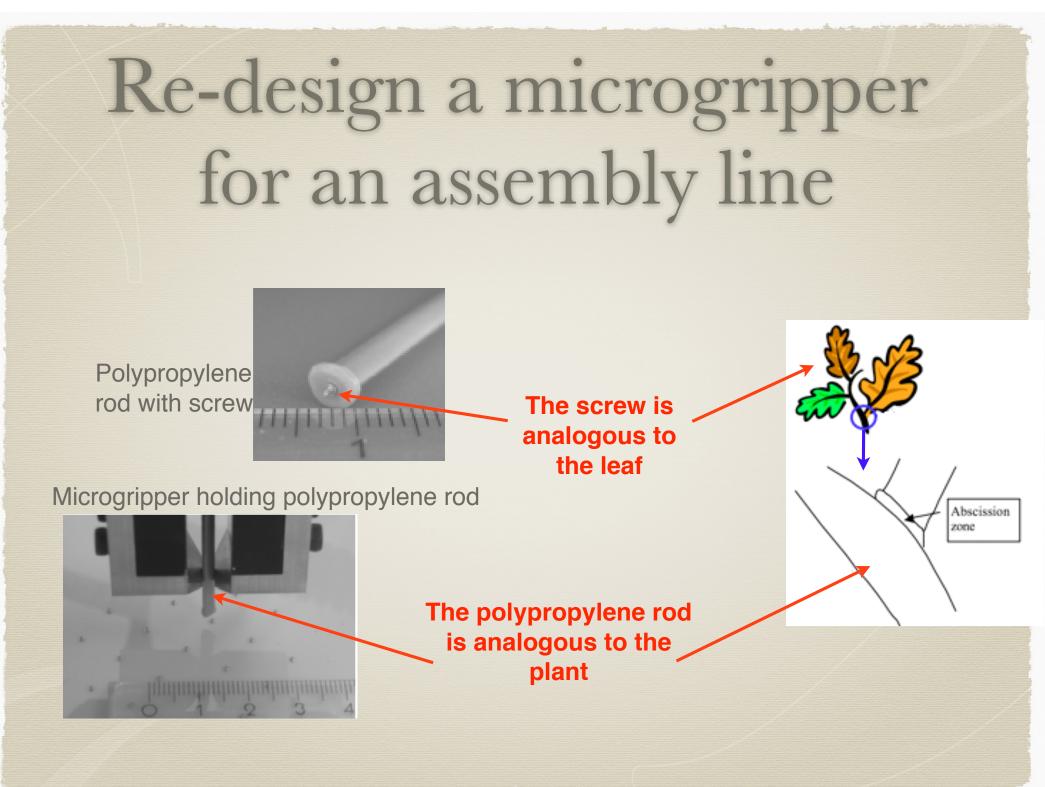


The rod is touched to the hot plate and then to the screw to form an "abscission zone" Plastics holder

≻ X

Heater

Screw holder



Sacrificial part

Robot

Y

۸

J.K. Nagel © 2020

E2B Thesaurus Summary

- * Formatted as a look up table
- * Italicized words indicate that it they have multiple meanings
- * Useful for...
 - * translating biological terms into engineering ones for comprehension
 - * establishing analogies through terminology
 - * defining biology keywords for an inspiration search

References

- * Nagel, J.K.S. (2014) "A Thesaurus for Bioinspired Engineering Design." Chapter 4 in Biologically Inspired Design: Computational Methods and Tools, A. Goel, D.A. McAdams, R.B. Stone (eds.), Springer, ISBN: 1447152476.
- * Nagel, J.K.S., Nagel, R., and Eggermont, M. (2013) "Teaching Biomimicry with an Engineering-to-Biology Thesaurus," Proceedings of ASME IDETC/CIE 2013, DEC-12068, Portland, OR. *Nominated for best paper award.
- * Nagel, J.K.S., Stone, R.B., McAdams, D.A. (2010) "An Engineering-to-Biology Thesaurus for Engineering Design." ASME IDETC/CIE 2010 DTM-28233, Montreal, Quebec, Canada.
- * Stroble, J.K., Stone, R.B., McAdams, D.A., Watkins, S.E. (2009) "An Engineering-to-Biology Thesaurus to Promote Collaboration, Creativity and Discovery." Proceedings of the CIRP Design Conference 2009, pp. 335-368, Cranfield, Bedfordshire, England.